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A Landauer’s limit and the quest for reversible computing.

A Resource theory of quantum thermodynamics.

A Generalized reversible computing and dissipation bound on quantum computing.
A Modelling in quantum open systems.

A State space geometric properties of open systems and impact on generalized reversible

computing.
A Application to the dissipation delay product.

A Asynchronous ballistic quantum computing.



| andauer’'s Limit

ALandauer’s limit!Yl: one bit of information lost in computational process dissipates
30 Q'Y t of energy as heat.

A Dissipation due to increase in entropy: 'Y Q1 t. Links information and physics!
A Ejection of information in correlated bits?: loss of prior correlations to environment.
A Ejection of uncorrelated bits to the environment does not contribute to change in entropy.

ANo-hiding theoreml3l: information can't be destroyed.

A Moves from system “Yto environment ‘O. Global unitary evolution over = § =

A Information lost from original system can't remain in "Y'Qorrelations.

AConventional computing: entirely irreversible. (Ex.: clearing memory.)

[1] — R. Landauer, IBM J. Res. Dev. 5, 163 (1961).

[2] — M. Frank, arXiv:1806.10183.
[3] = S. Braunstein and A. K. Pati, Phys. Rev. Lett. 98, 080502 (2007).



https://arxiv.org/abs/1806.10183
https://www.pitt.edu/~jdnorton/lectures/Rotman_Summer_School_2013/thermo_computing_docs/Landauer_1961.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.080502

Resource Theory

A Resource theor/: all free states” N™ (= ) and free operations B N 1 T1(1T (= ))

which can be implemented with no energetic cost or dissipation, with conditions.

A Ex.: Resource theory of bipartite entanglement. Free states: separable states. Free

operations: local unitaries & classical communication (LOCC). Necessary & sufficient
condition: [T Y[ | ™ [%9{(%¢ iff X[ ) "Y%o).

AResource theory of quantum thermodynamics (RTQT):
A Free states for nontrivialT "O equilibrium thermal states {" }.

A Free operations for nontrivial T "Q all operations that preserve {" }. Thermal operations.

A Condition for ” m  under thermal operations: thermomajorization.

[4] = N. H. Y. Ng and M. P. Woods, in Thermodynamics in the Quantum Regime, edited by F. Binder et al. (Springer Nature, Cham, 2018);

see also arXiv:1805.09564.


https://arxiv.org/abs/1805.09564
https://link.springer.com/chapter/10.1007/978-3-319-99046-0_26

Thermal Operations and Thermomajorization

A Start: system “"Ycoupled to environment O. O starts in thermal state: 7 .

A Thermal operations: all quantum channels. (" )@ ™ 4 (\){TY " & 5)Y }8

A Energy-conserving unitary dynamics: global unitary evolution Y across "YO

A Require ['Y HO 'O | mat all times.

A Maps thermal states to thermal states (but not necessarily the same one).

A Thermomajorization: necessary & sufficient for. (*) to map” ™ , . For eigenvalues _ (") of ”

with corresponding energies Oy, , require:

( Q Ffh =(”)“) ( Q fh =(,,)“)

A _ (")°: order eigenvalues of ” by decreasing value.



Classical Computing as a Lower Dissipative Bound

Alnformation processing expressed as a thermal operation[sl. Dissipation:
3\_!0 TQ "\(!‘Yn ) “YI )) “Y('?'Y (n é ” é ” )?'Y ”I é ” é ” )

A System “Ycoupled to environment ‘O and catalyst U ; same as splitting Ointo 0 and ‘O.

~
€

AChannel:. " )¢ ™' h 4 O4 O{Y & &§")Y }
A First term: information cost of classical IP. Second term: quantum IP.

AClassical IP is a lower dissipative bound! Quantum IP can be equal at best.

A Classical IP: signal states correspond to orthogonal quantum states.

A Pure unitaries and single input & output operations match classical IP dissipation bound.

[5] — D. Bedingham and O. Maroney, New J. Phys. 18, 113050 (2016)



https://iopscience.iop.org/article/10.1088/1367-2630/18/11/113050/meta

Generalized Reversible Computing

A Reversible computing: reversibly transform computational

C1

states, instead of destructively overwriting them.

A Computational states @ states representing @

computational information.

A {@3 partitions {"} in equiv. classes. All {"} in same class are

linked by unitary transform: have same entropy.

A GRC: Bijections on the probability-1 subset of {dJ.

A Lower dissipative bound on classical RC can be zero!

A Quantum RC: bounded only by mutual entropy term.

Image modified from M. Frank, arXiv:1806.10183.



https://arxiv.org/abs/1806.10183

Resource Theory & Quantum Reversible Computing

AKey issue: IP operations usually involve a catalyst machine, which sometimes

needs to be reset. Reset destroys correlations (mutual info.): dissipation!

A This is also the source of dissipation in irreversible (classical) computing.

AThermal operations can provide a framework for quantum RC with dissipation

arbitrarily close to classical RC.

A Same idea as classical RC: preserve correlations. Rigorously proved!®: examine the transition

S 7" S JOXNoIm" S |0 30 3| for™ Ocoupled to work bit |0 ). Resetting
condition: 4 O ”

A" ||4 O ) can be arbitrarily close to zero: arbitrarily close to classical IP bound.

[6] — M. Miiller, Phys. Rev. X 8, 041051 (2018).


https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.041051

Image taken from M. Miiller, Phys. Rev. X 8, 041051 (2018).




